Воздействие какого поражающего фактора ядерного взрыва может вызвать ожог пожары

При наземном ядерном взрыве около 50 % энергии идёт на образование ударной волны и воронки в земле, 30— 50 % в световое излучение, до 5 % на проникающую радиацию и электромагнитное излучение и до 15 % в радиоактивное заражение местности.

При воздушном взрыве нейтронного боеприпаса доли энергии распределяются своеобразно: ударная волна до 10 %, световое излучение 5 — 8 % и примерно 85 % энергии уходит в проникающую радиацию (нейтронное и гамма-излучения)[1]

Ударная волна и световое излучение аналогичны поражающим факторам традиционных взрывчатых веществ, но световое излучение в случае ядерного взрыва значительно мощнее.

Ударная волна разрушает строения и технику, травмирует людей и оказывает отбрасывающее действие быстрым перепадом давления и скоростным напором воздуха. Последующие за волной разрежение (падение давления воздуха) и обратный ход воздушных масс в сторону развивающегося ядерного гриба также могут нанести некоторые повреждения.

Световое излучение действует только на неэкранированные, то есть ничем не прикрытые от взрыва объекты, может вызвать воспламенение горючих материалов и пожары, а также ожоги и поражение зрения человека и животных.

Проникающая радиация оказывает ионизирующее и разрушающее воздействие на молекулы тканей человека, вызывает лучевую болезнь. Особенно большое значение имеет при взрыве нейтронного боеприпаса. От проникающей радиации могут защитить подвалы многоэтажных каменных и железобетонных зданий, подземные убежища с заглублением от 2-х метров (погреб, например или любое укрытие 3-4 класса и выше), некоторой защитой обладает бронированная техника.

Радиоактивное заражение — при воздушном взрыве относительно «чистых» термоядерных зарядов (деление-синтез) этот поражающий фактор сведён к минимуму. И наоборот, в случае взрыва «грязных» вариантов термоядерных зарядов, устроенных по принципу деление-синтез-деление, наземного, заглублённого взрыва, при которых происходит нейтронная активация содержащихся в грунте веществ, а тем более взрыва так называемой «грязной бомбы» может иметь решающее значение.

Электромагнитный импульс выводит из строя электрическую и электронную аппаратуру, нарушает радиосвязь.

В зависимости от типа заряда и условий взрыва энергия взрыва распределяется по-разному. Например, при взрыве обычного ядерного заряда средней мощности (10 — 100 кт) без повышенного выхода нейтронного излучения или радиоактивного загрязнения может быть следующее соотношение долей энергетического выхода на различных высотах[2]:

Доли энергии воздействующих факторов ядерного взрыва
Высота / ГлубинаРентгеновское излучениеСветовое излучениеТеплота огненного шара и облакаУдарная волна в воздухеДеформация и выброс грунтаВолна сжатия в грунтеТеплота полости в землеПроникающая радиацияРадиоактивные вещества
100 км64 %24 %6 %6 %
70 км49 %38 %1 %6 %6 %
45 км1 %73 %13 %1 %6 %6 %
20 км40 %17 %31 %6 %6 %
5 км38 %16 %34 %6 %6 %
0 м34 %19 %34 %1 %менее 1 %?5 %6 %
Глубина камуфлетного взрыва30 %30 %34 %6 %

Световое излучение[править | править код]

Самое страшное проявление взрыва — не гриб, а быстротечная вспышка и образованная ею ударная волна

Образование головной ударной волны (эффект Маха) при взрыве 20 кт

Разрушения в Хиросиме в результате атомной бомбардировки

Жертва ядерной бомбардировки Хиросимы

Световое излучение — это поток лучистой энергии, включающий ультрафиолетовую, видимую и инфракрасную области спектра. Источником светового излучения является светящаяся область взрыва — нагретые до высоких температур и испарившиеся части боеприпаса, окружающего грунта и воздуха. При воздушном взрыве светящаяся область представляет собой шар, при наземном — полусферу.

Максимальная температура поверхности светящейся области составляет обычно 5700-7700 °C. Когда температура снижается до 1700 °C, свечение прекращается. Световой импульс продолжается от долей секунды до нескольких десятков секунд, в зависимости от мощности и условий взрыва. Приближенно, продолжительность свечения в секундах равна корню третьей степени из мощности взрыва в килотоннах. При этом интенсивность излучения может превышать 1000 Вт/см² (для сравнения — максимальная интенсивность солнечного света 0,14 Вт/см²).

Результатом действия светового излучения может быть воспламенение и возгорание предметов, оплавление, обугливание, большие температурные напряжения в материалах.

При воздействии светового излучения на человека возникает поражение глаз и ожоги открытых участков тела, а также может возникнуть поражение и защищенных одеждой участков тела.

Защитой от воздействия светового излучения может служить произвольная непрозрачная преграда.

В случае наличия тумана, дымки, сильной запыленности и/или задымленности воздействие светового излучения также снижается.

Ударная волна[править | править код]

Большая часть разрушений, причиняемых ядерным взрывом, вызывается действием ударной волны. Ударная волна представляет собой скачок уплотнения в среде, который движется со сверхзвуковой скоростью (более 350 м/с для атмосферы). При атмосферном взрыве скачок уплотнения — это небольшая зона, в которой происходит почти мгновенное увеличение температуры, давления и плотности воздуха. Непосредственно за фронтом ударной волны происходит снижение давления и плотности воздуха, от небольшого понижения далеко от центра взрыва и почти до вакуума внутри огненной сферы. Следствием этого снижения является обратный ход воздуха и сильный ветер вдоль поверхности со скоростями до 100 км/час и более к эпицентру.[3] Ударная волна разрушает здания, сооружения и поражает незащищенных людей, а близко к эпицентру наземного или очень низкого воздушного взрыва порождает мощные сейсмические колебания, способные разрушить или повредить подземные сооружения и коммуникации, травмировать находящихся в них людей.

Большинство зданий, кроме специально укрепленных, серьёзно повреждаются или разрушаются под воздействием избыточного давления 2160—3600 кг/м² (0,22—0,36 атм/0.02-0.035 МПа).

Энергия распределяется по всему пройденному расстоянию, из-за этого сила воздействия ударной волны уменьшается пропорционально кубу расстояния от эпицентра.

Защитой от ударной волны для человека являются убежища. На открытой местности действие ударной волны снижается различными углублениями, препятствиями, складками местности.

На Западе, в качестве отдельного фактора, относящегося к ударной волне, выделяют осколки стекла: выбитые ударной волной стекла разлетаются на осколки, летящие в сторону от взрыва, и способные серьезно травмировать и даже убить находящихся за стеклом.

Проникающая радиация[править | править код]

Проникающая радиация (ионизирующее излучение) представляет собой гамма-излучение и поток нейтронов, испускаемых из зоны ядерного взрыва в течение единиц или десятков секунд.

Радиус поражения проникающей радиации при взрывах в атмосфере меньше, чем радиусы поражения от светового излучения и ударной волны, поскольку она сильно поглощается атмосферой. Проникающая радиация поражает людей только на расстоянии 2-3 км от места взрыва, даже для больших по мощности зарядов, однако ядерный заряд может быть специально сконструирован таким образом, чтобы увеличить долю проникающей радиации для нанесения максимального ущерба живой силе (так называемое нейтронное оружие). На больших высотах, в стратосфере и космосе проникающая радиация и электромагнитный импульс — основные поражающие факторы.

Проникающая радиация может вызывать обратимые и необратимые изменения в материалах, электронных, оптических и других приборах за счет нарушения кристаллической решетки вещества и других физико-химических процессов под воздействием ионизирующих излучений.

Защитой от проникающей радиации служат различные материалы, ослабляющие гамма-излучение и поток нейтронов. Разные материалы по-разному реагируют на эти излучения и по-разному защищают.

От гамма-излучения хорошо защищают материалы, имеющие элементы с высокой атомной массой (железо, свинец, низкообогащённый уран), но эти элементы очень плохо ведут себя под нейтронным излучением: нейтроны относительно хорошо их проходят и при этом генерируют вторичные захватные гамма-лучи, а также активируют радиоизотопы, надолго делая саму защиту радиоактивной (например, железную броню танка; свинец же не проявляет вторичной радиоактивности). Пример слоёв половинного ослабления проникающего гамма-излучения[4]: свинец 2 см, сталь 3 см, бетон 10 см, каменная кладка 12 см, грунт 14 см, вода 22 см, древесина 31 см.

Нейтронное излучение в свою очередь хорошо поглощается материалами, содержащими лёгкие элементы (водород, литий, бор), которые эффективно и с малым пробегом рассеивают и поглощают нейтроны, при этом не активируются и гораздо меньше выдают вторичное излучение. Слои половинного ослабления нейтронного потока: вода, пластмасса 3 — 6 см, бетон 9 — 12 см, грунт 14 см, сталь 5 — 12 см, свинец 9 — 20 см, дерево 10 — 15 см. Лучше всех материалов поглощают нейтроны водород (но в газообразном состоянии он имеет малую плотность), гидрид лития и карбид бора.

Идеального однородного защитного материала от всех видов проникающей радиации нет, для создания максимально лёгкой и тонкой защиты приходится совмещать слои различных материалов для последовательного поглощения нейтронов, а затем первичного и захватного гамма-излучения (например, многослойная броня танков, в которой учтена и радиационная защита; защита оголовков шахтных пусковых установок из ёмкостей с гидратами лития и железа с бетоном), а также применять материалы с добавками. Универсальны широко применяемые в строительстве защитных сооружений бетон и увлажнённая грунтовая засыпка, содержащие и водород и относительно тяжёлые элементы. Очень хорош для строительства бетон с добавкой бора (20 кг B4C на 1 м³ бетона), при одинаковой толщине с обычным бетоном (0,5 — 1 м) он обеспечивает в 2 — 3 раза лучшую защиту от нейтронной радиации и подходит для защиты от нейтронного оружия[5].

Электромагнитный импульс[править | править код]

Зарево, возникшее в результате высотного ядерного взрыва Starfish Prime

При ядерном взрыве в результате сильных токов в ионизированном радиацией и световым излучением в воздухе возникает сильнейшее переменное электромагнитное поле, называемое электромагнитным импульсом (ЭМИ). Хотя оно и не оказывает никакого влияния на человека, воздействие ЭМИ повреждает электронную аппаратуру, электроприборы и линии электропередач. Помимо этого, большое количество ионов, возникшее после взрыва, препятствует распространению радиоволн и работе радиолокационных станций. Этот эффект может быть использован для ослепления системы предупреждения о ракетном нападении.

Сила ЭМИ меняется в зависимости от высоты взрыва: в диапазоне ниже 4 км он относительно слаб, сильнее при взрыве 4-30 км, и особенно силён при высоте подрыва более 30 км (см., например, эксперимент по высотному подрыву ядерного заряда Starfish Prime).

Возникновение ЭМИ происходит следующим образом:

  1. Проникающая радиация, исходящая из центра взрыва, проходит через протяженные проводящие предметы.
  2. Гамма-кванты рассеиваются на свободных электронах, что приводит к появлению быстро изменяющегося токового импульса в проводниках.
  3. Вызванное токовым импульсом поле излучается в окружающее пространство и распространяется со скоростью света, со временем искажаясь и затухая.

Под воздействием ЭМИ во всех не экранированных протяжённых проводниках индуцируется напряжение, и чем длиннее проводник, тем выше напряжение. Это приводит к пробою изоляции и выходу из строя электроприборов, связанных с кабельными сетями, например, трансформаторные подстанции и т. д.

Большое значение ЭМИ имеет при высотном взрыве от 100 км и более. При взрыве в приземном слое атмосферы не оказывает решающего поражения малочувствительной электротехники, его радиус действия перекрывается другими поражающими факторами. Но зато оно может нарушить работу и вывести из строя чувствительную электроаппаратуру и радиотехнику на значительных расстояниях — вплоть до нескольких десятков километров от эпицентра мощного взрыва, где прочие факторы уже не приносят разрушающий эффект. Может вывести из строя незащищённую аппаратуру в прочных сооружениях, рассчитанных на большие нагрузки от ядерного взрыва (например ШПУ). На людей поражающего действия не оказывает[6].

Радиоактивное заражение[править | править код]

Кратер от взрыва 104-килотонного заряда. Выбросы грунта также служат источником заражения

Радиоактивное заражение — это результат выпадения из поднятого в воздух облака значительного количества радиоактивных веществ. Три основных источника радиоактивных веществ в зоне взрыва — продукты деления ядерного горючего, не вступившая в реакцию часть ядерного заряда и радиоактивные изотопы, образовавшиеся в грунте и других материалах под воздействием нейтронов (наведенная радиоактивность).

Оседая на поверхность земли по направлению движения облака, продукты взрыва создают радиоактивный участок, называемый радиоактивным следом. Плотность заражения в районе взрыва и по следу движения радиоактивного облака убывает по мере удаления от центра взрыва. Форма следа может быть самой разнообразной в зависимости от окружающих условий, например, скорости и направления ветра.

Радиоактивные продукты взрыва испускают три вида излучения: альфа, бета и гамма. Время их воздействия на окружающую среду весьма продолжительно. В связи с естественным процессом радиоактивного распада интенсивность излучения уменьшается, особенно резко это происходит в первые часы после взрыва.

Поражение людей и животных воздействием радиационного заражения может вызываться внешним и внутренним облучением. Тяжелые случаи могут сопровождаться лучевой болезнью и летальным исходом.

Установка на боевую часть ядерного заряда оболочки из кобальта вызывает заражение территории опасным изотопом 60Co (гипотетическая грязная бомба).

Эпидемиологическая и экологическая обстановка[править | править код]

Ядерный взрыв в населённом пункте, как и другие катастрофы, связанные с большим количеством жертв, разрушением вредных производств и пожарами, приведёт к тяжёлым условиям в районе его действия, что будет вторичным поражающим фактором. Люди, даже не получившие значительных поражений непосредственно от взрыва, с большой вероятностью могут погибнуть от инфекционных заболеваний[7] и химических отравлений. Велика вероятность сгореть в пожарах или просто расшибиться при попытке выйти из завалов.

Ядерная атака атомной электростанции может поднять в воздух значительно больше радиоактивных веществ, чем может дать сама бомба. При прямом попадании заряда и испарении реактора или хранилища радиоактивных материалов площадь земель, в течение многих десятков лет непригодных для жизни, будет в сотни и тысячи раз больше площади заражения от наземного ядерного взрыва. Например, при испарении реактора мощностью 100 МВт ядерным взрывом в 1 мегатонну, и просто при наземном ядерном взрыве 1 Мт, соотношение площадей территории со средней дозой 2 рад (0,02 Грей) в год будет следующим: через 1 год после атаки — 130 000 км² и 15 000 км²; через 5 лет — 60 000 км² и 90 км²; через 10 лет — 50 000 км² и 15 км²; через 100 лет — 700 км² и 2 км²[8].

Психологическое воздействие[править | править код]

Люди, оказавшиеся в районе действия взрыва, кроме физических повреждений, испытывают мощное психологическое угнетающее воздействие от устрашающего вида разворачивающейся картины ядерного взрыва, катастрофичности разрушений и пожаров, исчезновения привычного ландшафта, множества погибших, изувеченных, умирающих людей, разлагающихся трупов из-за невозможности их захоронения, гибели родных и близких, осознания причинённого вреда своему организму и ужаса наступающей смерти от развивающейся лучевой болезни. Результатом такого воздействия среди выживших после катастрофы является развитие острых психозов, а также клаустрофобных синдромов из-за осознания невозможности выйти на поверхность земли, устойчивых кошмарных воспоминаний, влияющие на все последующее существование. В Японии есть отдельное слово, обозначающее людей, ставших жертвами ядерных бомбардировок — «Хибакуся».

Ссылки[править | править код]

  • Поражающие факторы ядерного взрыва

Источники[править | править код]

  1. ↑ Убежища гражданской обороны: Конструкция и расчёт/ В. А. Котляревский, В. И. Ганушкин, А. А. Костин и др.; Под ред. В. А. Котляревского. — М.: Стройиздат, 1989. — С. 4—5. ISBN 5-274-00515-2
  2. ↑ Защита от оружия массового поражения. — М.: Воениздат, 1989. — С. 23.
  3. ↑ Действие ядерного взрыва. Сборник переводов. М., «Мир», 1971. — С. 85
  4. ↑ Морозов, В. И. и др. Приспособление подвалов существующих зданий под убежища, М., 1966. С. 72
  5. ↑ Иванов, Г. Нейтронное оружие. // Зарубежное военное обозрение, 1982, № 12. — С. 53

  6. Атаманюк В.Г., Ширшев Л.Г. Акимов Н.И. Гражданская оборона: Учебник для втузов / Под ред. Д.И.Михайдова. — М.: Высш. шк., 1986. — С. 39. — 207 с.
  7. ↑ Иванов, Г. Нейтронное оружие. // Зарубежное военное обозрение, 1982, № 12. — С. 52

  8. Защита от оружия массового поражения. — М.: Воениздат, 1989. — С. 79, 81.

9. Гуревич В. И. Электромагнитный импульс высотного ядерного взрыва и защита электрооборудования от него. — М.: Инфра-Инженерия, 2018—508 с.: ил.

Источник

Поражающие факторы ядерного оружия

 При ядерном взрыве действуют пять поражающих факторов: ударная волна, световое излучение, проникающая радиация, радиоактивное заражение, и электромагнитный импульс. Энергия ядерного взрыва распределяется примерно так: 50% расходуется на ударную волну, 35% – на световое излучение, 10% – на радиоактивное заражение, 4% – на проникающую радиацию и 1% – на электромагнитный импульс. Высокая температура и давление вызывают мощную ударную волну и световое излучение. Взрыв ядерного боеприпаса сопровождается выходом проникающей радиации, состоящей из потока нейтронов и гамма квантов. Облако взрыва содержит огромное количество радиоактивных продуктов – осколков деления ядерного горючего. По пути движения этого облака радиоактивные продукты из него выпадают, в результате чего происходит радиоактивное заражение местности, объектов и воздуха. Не равномерное движение электрических зарядов в воздухе под воздействием ионизирующих излучений приводит к образованию электромагнитного импульса. Так формируются основные поражающие факторы ядерного взрыва. Явления, сопровождающие ядерный взрыв, в значительной мере зависят от условий и свойств среды, в которой он происходит.

  Ударная волна (УВ) основной поражающий фактор ядерного взрыва, который производит разрушение, повреждение зданий и сооружений, а также поражает людей и животных. Источником УВ является сильное давление, образующееся в центре взрыва (миллиарды атмосфер). Образовавшееся при взрыве раскаленные газы, стремительно расширяясь, передают давление соседним слоям воздуха, сжимая и нагревая их, а те в свою очередь воздействуют на следующие слои и т.д. В результате в воздухе со сверхзвуковой скоростью во все стороны от центра взрыва распространяется зона высокого давления.

Поражающее действие УВ характеризуется величиной избыточного давления.

 Избыточное давление – это разность между максимальным давлением во фронте УВ и нормальным атмосферным давлением, измеряется в Паскалях (ПА, кПА). Распространяется со сверх звуковой скоростью, УВ на своем пути разрушает здания и сооружения, образуя четыре зоны разрушений (полных, сильных, средних, слабых) в зависимости от расстояния: Зона полных разрушений — 50 кПА Зона сильных разрушений — 30-50 кПА. Зона средних разрушений — 20-30 кПА. Зона слабых разрушений — 10-20 кПА.

Разрушения строительных сооружений, производимые избыточным давлением:
720 кг/м2 (1 psi – фунт/кв. дюйм) – вылетают окна и двери;
2160 кг/м2 (3 psi) – разрушение жилых домов;
3600 кг/м2 (5 psi) – разрушение или сильное повреждение зданий из монолотного железобетона;
7200 кг/м2 (10 psi) – разрушение особо прочных бетонных сооружений;
14400 кг/м2 (20 psi) – выдерживают такое давление только специальные сооружения (типа бункеров).
Радиусы распространения этих зон давления можно рассчитать по следующей формуле:
R = C * X0.333,
R – радиус в километрах, X – заряд в килотоннах, C – константа, зависящая от уровня давления:
C = 2.2, для давления 1 psi
C = 1.0, для давления 3 psi
C = 0.71, для давления 5 psi
C = 0.45, для давления 10 psi
C = 0.28, для давления 20 psi

Ударная волна действует на людей двумя способами:

  Прямое действие ударной волны и косвенное действие УВ ( летящими обломками сооружений, падающими стенами домов и деревьями, осколками стекла, камнями). Эти воздействия вызывают различные по степени тяжести поражения: Легкие поражения — 20-40 кПА (контузии, легкие ушибы). Средней тяжести — 40-60 кПА (потеря сознания, повреждение органов слуха, вывихи конечностей, кровотечение из носа и ушей, сотрясение мозга). Тяжелые поражение — более 60 кПА (сильные контузии, переломы конечностей, поражение внутренних органов). Крайне тяжелые поражения — более 100кПА ( со смертельным исходом). Эффективным способом защиты от прямого воздействия УВ будет укрытие в защитных сооружениях (убежищах, ПРУ, быстровозводимых населением). Для укрытия можно использовать канавы, овраги, пещеры, горные выработки, подземные переходы; можно просто лечь на землю в отдалении от зданий и сооружений.

Световое излучение (СИ) – это поток лучистой энергии (ультрафиолетовые и инфракрасные лучи). Источником СИ является светящаяся область взрыва, состоящая из нагретых до высокой температуры паров и воздуха. СИ распространяется практически мгновенно и длится в зависимости от мощности ядерного боеприпаса (20-40 секунд). Однако не смотря на кратковременность своего воздействия эффективность действия СИ очень высока. СИ составляет 35% от всей мощности ядерного взрыва. Энергия светового излучения поглощается поверхностями освещаемых тел, которые при этом нагреваются. Температура нагрева может быть такой, что поверхность объекта обуглится, оплавится, воспламенится или объект испарится.

Поражающее действие светового излучения характеризуется световым импульсом, т. е. количеством световой энергии, приходящейся за время излучения на 1 см2 поверхности, перпендикулярно расположенной к направлению световых лучей. За единицу измерения светового импульса принимают 1 кал/см2.

Световое излучение может вызвать ожоги открытых участков тела, ослепление людей и животных, обугливание или возгорание различных материалов. Поражение людей СИ выражается в появлении ожогов четырех степеней на кожном покрове и действием на глаза.

Так, при световом импульсе 2—4 кал/см2 у незащищенных людей могут возникнуть ожоги первой степени (краснота, припухлость, отек кожи – 100-200 кДж/м2).

При 4—6 кал/см2— ожоги второй степени (на фоне отечной кожи образуются пузыри разных размеров, наполненные прозрачной желтоватой жидкостью– 200-400 кДж/м2).

При 6— 12 кал/см2—ожоги третьей степени (полное омертвление кожных покровов и образование язв – 400-600 кДж/м2)

При световом импульсе более 12 кал/см2 ожоги четвёртой степени (обугливание кожи, омертвление глубоких слоев кожи и подлежащих ткани (подкожная жировая клетчатка, мышцы, кости).  – более 600 кДж/м2).

Действие СИ на глаза: Временное ослепление – до 30 мин. Ожоги роговицы и век. Ожог глазного дна – слепота.

Световое излучение вызывает ожоги кожи, степень которых зависит от силы бомбы и удаленности от эпицентра:

Тяжесть ожога

20 кт

1 Мт

20 Мт

1-й степени

2.5 кал/см2 (4.3 км)

3.2 кал/см2 (18 км)

5 кал/см2 (52 км) 

2-й степени

 5 кал/см2 (3.2 км) 

6 кал/см2 (14.4 км) 

8.5 кал/см2 (45 км)

3-й степени

8 кал/см2 (2.7 км) 

10 кал/см2 (12 км) 

12 кал/см2 (39 км)

 Проникающая радиация – это поток гамма-лучей и нейтронов, испускаемый из области взрыва в течении нескольких секунд. Из-за очень сильного поглощения в атмосфере, проникающая радиация поражает людей только на расстоянии 2-3 км от места взрыва, даже для больших по мощности зарядов. Расстояния, пройдя которое поток ослабевает в 10 раз для различных величин взрывов:
1 кт: L = 330 м
10 кт: L = 440 м
100 кт: – L = 490 м
1 Мт: L = 560 м
10 Мт: L = 670 м
20 Мт: L = 700 м.
Таким образом, можно вычислить уровень радиации на любом расстоянии от эпицентра:

  Doze – доза приникающей радиации в рад, D – расстояние в метрах, L – константа ослабления, X – мощность взрыва в килотоннах.

При прохождении проникающей радиации через любую среду ее действие ослабляется. Излучение разных видов оказывают неодинаковое воздействие на организм, что объясняется разной их ионизирующей способностью.

  Так альфа-излучения, представляющие собой тяжелые имеющие заряд частицы, обладают наибольшей ионизирующей способностью. Но их энергия, вследствие ионизации, быстро уменьшается. Поэтому альфа-излучения не способны проникнуть через наружный (роговой) слой кожи и не представляют опасности для человека до тех пор, пока вещества, испускающие альфа-частицы не попадут внутрь организма.

  Бета-частицы на пути своего движения реже сталкиваются с нейтральными молекулами, поэтому их ионизирующая способность меньше, чем у альфа-излучения. Потеря же энергии при этом происходит медленнее и проникающая способность в тканях организма больше (1-2 см). Бета-излучения опасны для человека, особенно при попадании радиоактивных веществ на кожу или внутрь организма.

  Гамма-излучение обладает сравнительно небольшой ионизирующей активностью, но в силу очень высокой проникающей способности представляет большую опасность для человека.

  Ослабляющее действие ПР принято характеризовать слоем половинного ослабления, т.е. толщиной материала, проходя через который ПР уменьшается в два раза. Так, ПР ослабляют в два раза следующие материалы:

  Свинец – 1.8 см      Грунт, кирпич – 14 см      Сталь – 2.8 см    Вода – 23 см    Бетон – 10 см      Дерево – 30 см.

 1 степень лучевой болезни – легкая – 100-200 бэр,

  2 степень  лучевой болезни – средней тяжести 200-400 бэр,

  3 степень лучевой болезни  – тяжелая – 400-600 бэр,

  4 степень лучевой болезни  – крайне тяжелая – более 600 бэр.

                                                                Радиоактивное заражение

Зона А – умеренного заражения – от 40 до 400 бэр. Зона умеренного заражения – самая большая по размерам. В ее пределах население, находящееся на открытой местности, может получить в первые сутки после взрыва легкие радиационные поражения.

Менее 100 бэр.
    Такие дозы не оказывают существенного влияния на здоровье. Изменения в составе крови начинаются с 25 бэр. Эти изменения включают в себя общие изменение содержания белых кровяных клеток (уменьшение лимфоцитов), уменьшение тромбоцитов, и небольшое уменьшение красных кровяных клеток, такое состояние определяется лишь по анализу крови и устанавливается в течении нескольких дней после облучения. Продолжительность изменений в организме – около месяца. При 50 бэр становятся заметными ослабление лимфатических желез, снижение иммунитета. 80 Бэр дают 50% вероятность временного бесплодия у мужчин.

100-200 бэр.
    Симптомы умеренной степени тяжести. Возможна тошнота (в половине случаев при 200 бэр), иногда сопровождающаяся рвотой, появляющаяся через 3-6 часов после получения дозы и длящаяся от нескольких часов до дня. За этим следует период ремиссии, в течении которого пострадавший находится в нормальном самочувствии. Изменения в крови постепенно нарастают из-за естественной убыли и невосполнения кровяных клеток. Через 10-14 дней происходит следующее ухудшение самочувствия: потеря аппетита (у 50% при 150 бэр), недомогание, утомляемость (у 50% при 200 бэр) продолжающееся около месяца. В это время отмечается повышенная заболеваемость, из-за сниженного иммунитета, временное бесплодие у мужчин. Для доз из верхнего предела этого интервала клиническая картина сходная, за исключением меньшего периода ремиссии, более выраженных симптомов и большего периода выздоровления.

200-400 бэр.
Степень заболевания достаточно серьезна. Основной пораженной тканью организма остается кроветворная. Тошнота наблюдается у 100% пострадавших при облучении в 300 бэр, в половине случаев она сопровождается рвотой. Начальные симптомы выявляются уже после 1-6 часов и длятся 1-2 дня. После 7-14 дней ремиссии, они возвращаются, к ним может прибавиться потеря волос, недомогание, усталость, диарея. При дозах более 350 бэр появляются кровотечения изо рта, подкожные, гематурия – наличие крови в моче. Возможно постоянное бесплодие у мужчин, выздоровление занимает несколько месяцев.

Зона Б – сильного заражения – от 400 до 1200 бэр. В зоне сильного заражения опасность для людей и животных выше. Здесь возможны тяжелые радиационные поражения даже за несколько часов пребывания на открытой местности, особенно в первые сутки.

400-600 бэр.
При таких дозах полученной радиации, смертность, без оказания серьезной медицинской помощи (пересадка костного мозга), резко идет вверх: от 50% при 350 бэр до 90% при 600. Первоначальные симптомы возникают в период от 30 мин до 2 часов и продолжаются до двух дней. После 1-2 недель появляются все признаки характерные для облучения в 200-400 бэр, только в гораздо более тяжелой форме. Смерть наступает после 2-12 недель от многочисленных кровоизлияний и заражения каким-либо заболеванием (иммунитет практически отсутствует). Период излечения – около года, состав крови нормализуется еще дольше. Может происходить развитие бесплодия у женщин.

600-1000 бэр.
Костный мозг отмирает практически полностью. Вероятность выжыть без его пересадки – отсутствует. Первоначальное ухудшение состояния наступает через 15-30 минут, и продолжается 2 дня. После 5-10 дней скрытого периода смерть наступает через 1-4 недели.

Зона В – опасного заражения – от 1200 до 4000 бэр. В зоне опасного заражения самые высокие уровни радиации. Даже на ее границе суммарная доза облучения за время полного распада радиоактивных веществ достигает 1200 р, а уровень радиации через 1 час после взрыва составляет 240 р/ч. В первые сутки после заражения суммарная доза на границе этой зоны составляет примерно 600 р, т.е. практически она смертельна. И хотя затем дозы облучения снижаются, на этой территории пребывание людей вне укрытий опасно очень продолжительное время.

Более 1000 бэр.
Такие высокие дозы ионизирующего излучения вызывают немедленное нарушение обмена веществ, понос, кровотечения, потерю жидкости организмом и нарушение электролитного баланса.
    При дозах 1000 – 5000 бэр это время уменьшается до 5-30 минут. Если удается пережить этот период, наступает фаза мнимого благополучия от пары часов до пары дней. Термальная фаза продолжается 2-10 дней, в течении ее больной впадает в прострацию, теряет аппетит, начинается кровавый понос. Пострадавший впадает в делирий, затем кому. Лечение таких доз направлено только на облегчение страданий умирающего.

Зона Г – чрезвычайно опасного заражения – от 4000 до 7000 бэр. 100% смертельная зона для человека.

  Получение более 5000 бэр приводит к нарушением, затрагивающим непосредственно нервную систему. Человек моментально теряет ориентацию, чуть позже впадает в кому. Смерть наступает в течении двух суток.
    Согласно оценкам, доза в 8000 бэр, например от нейтронной бомбы, ведет к моментальному впадению в кому и последующей смерти.

  Для защиты населения от РЗМ используются все имеющиеся защитные сооружения (убежища, ПРУ, подвалы многоэтажных домов, станции метрополитена). Эти защитные сооружения должны обладать достаточно высоким коэффициентом ослабления (Косл) – от 500 до 1000 и более раз, т.к. зоны радиоактивного заражения имеют высокие уровни радиации. В зонах РЗМ населению необходимо принимать радиозащитные препараты из АИ-2 (№1 и №2).

  Ядерные взрывы в атмосфере и в более высоких слоях приводят к образованию мощных электромагнитных полей с длинами волн от 1 до 1000 м и более. Эти поля в виду их кратковременного существования принято называть электромагнитным импульсом (ЭМИ). Электромагнитный импульс возникает и в результате взрыва и на малых высотах, однако напряженность электромагнитного поля в этом случае быстро спадает по мере удаления от эпицентра. В случае же высотного взрыва, область действия электромагнитного импульса охватывает практически всю видимую из точки взрыва поверхность Земли. Поражающее действие ЭМИ обусловлено возникновением напряжений и токов в проводниках различной протяженности, расположенных в воздухе, земле, в радиоэлектронной и радиотехнической аппаратуре.

 Наиболее подвержены воздействию ЭМИ линии связи, сигнализации и управления ракетных стартовых комплексов, командных пунктов. Большое количество ионов, оставшихся после взрыва, мешает коротковолновой связи и работе радаров. Защита от ЭМИ осуществляется экранированием линий управления и энергоснабжения, заменой плавких вставок (предохранителей) этих линий. ЭМИ составляет 1% от мощности ядерного боеприпаса.

 На образование ЭМИ очень значительное влияние оказывает высота взрыва. ЭМИ силен при взрыве на высотах ниже 4 км, и особенно силен при высоте более 30 км, однако менее значителен для диапазона 4-30 км. Это происходит из-за того, что ЭМИ образуется при несимметричном поглощении гамма-лучей в атмосфере. А на средних высотак как раз такое поглощение происходит симметрично и равномерно, не вызывая больших флуктуаций в распределении ионов.

Источник