При ядерном взрыве получил ожоги от светового излучения
Ожоги световым излучением ядерного взрыва.
Световая энергия, выделяющаяся при ядерном (атомном) взрыве, – один из основных поражающих факторов. При взрывах атомных бомб термические повреждения возникают в результате суммарного действия на организм ультрафиолетовых, видимых и инфракрасных лучей. При взрыве атомной бомбы высвобождается в виде светового излучения около одной трети энергии, 56% которой составляют инфракрасные лучи, 31%- видимые лучи и 13% – ультрафиолетовые. Различают первичные, или непосредственные, ожоги и вторичные.
Первичные (мгновенные) ожоги вызываются непосредственно световым излучением ядерного взрыва.
Вторичные возникают при возгорании одежды, взрывах емкостей с горючим, газом боевой техники и т. д.
Основной характеристикой светового излучения, определяющей поражающее действие, является световой импульс, т. е. количество энергии светового излучения, падающей за все время излучения на единицу площади. Поражающее действие светового излучения определяется величиной светового импульса, зависящей от мощности ядерного заряда и расстояния от центра взрыва. Световое излучение ядерного взрыва может вызывать ожоги кожи и поражения глаз. В зависимости от величины светового импульса, воспринимаемого кожными покровами, организм человека может быть поражен в разной степени. Чаще это поверхностные ожоги. Для них характерна профильность поражения, т. е. поражение той части тела, которая повернута к взрыву. Они локализуются на не защищенных одеждой участках тела, но могут возникать и под плотно прилегающей одеждой – без ее повреждения.
Несмотря на некоторые особенности возникновения первичных ожогов от светового излучения (отсутствие непосредственного контакта с источником тепла, кратковременность действия светового импульса), их основные внешние проявления и клиническое течение по существу такие же, как при обычных термических ожогах. Следует также иметь в виду, что поверхностные ожоги будут встречаться в основном при малых и средних по мощности ядерных взрывах, при которых действие светового излучения кратковременно. При взрывах мегатонных атомных бомб световое излучение воздействует более длительно, и могут возникнуть глубокие ожоги вследствие значительного прогревания тканей.
Клинические проявления лучевых ожогов описываются в литературе под разными названиями. Например, красно-коричневая пигментация кожи лица получила название «маски Хиросимы».
Органы зрения поражаются от временного ослепления (дезадаптация) до тяжелых ожогов глазного дна. Ядерная офтальмия: боли в глазах, светобоязнь и слезотечение, гиперемия и отек конъюнктивы век и глазного яблока, иногда язвы и помутнение роговицы.
Вторичные ожоги, как правило, глубокие и обширные и мало отличаются от тяжелых ожогов мирного времени.
Одновременное воздействие термического и других поражающих факторов атомного взрыва крайне отягощает течение ожоговой болезни. Наибольшую опасность представляют комбинированные поражения: ожоги в сочетании с проникающей радиацией.
При комбинированных поражениях иногда развиваются тяжелые формы шока, являющегося в подобных случаях следствием суммарного действия ряда неблагоприятных факторов: страха, угнетения психики, действия проникающей радиации и травмы.
При комбинированных термических и механических повреждениях и одновременном воздействии на организм проникающей радиации наблюдается синдром взаимного отягощения, сокращается скрытый период и утяжеляется период разгара лучевой болезни, что в свою очередь ухудшает течение ожога.
Поражения от прямого контакта массивных доз радиоактивных веществ с кожей или воздействия бета-излучения относятся к так называемым радиационным ожогам, протекающим атипично. В течении таких ожогов различают четыре периода.
Первый период – ранняя реакция на облучение, проявляется через несколько часов после поражения в виде эритемы различной интенсивности. Эритема держится от нескольких часов до 2 сут.
Второй период – скрытый, продолжительность его от нескольких часов до 3 недель. В этом периоде внешние проявления поражения отсутствуют.
Третий период – острого воспаления – характеризуется возникновением вторичной эритемы, а в тяжелых случаях – и появлением пузырей. Позднее на месте вскрывшихся пузырей образуются эрозии и язвы, которые очень плохо заживают. Этот период длится от 2–3 недель до нескольких месяцев.
Четвертый период – восстановления, когда эритема постепенно исчезает, а эрозии и язвы гранулируют и заживают. Заживление язв происходит медленно и иногда длится годами. Нередко язвы рецидивируют. Характерны трофические изменения кожи и глублежащих тканей (атрофия кожи и мышц, гиперкератоз, выпадение волос, деформация и ломкость ногтей).
Важнейшее средство профилактики радиационных ожогов – как можно более раннее и полное удаление радиоактивных веществ с кожи и ожоговой поверхности, достигаемое с помощью санитарной обработки. Пузыри опорожняют путем пункции и отсасывания содержимого. Местно применяют повязки, содержащие антибиотики и анестетики.
Образующиеся после ожогов рубцы имеют наклонность к келоидному перерождению. Возникновение их связывают с развитием гнойных осложнений и нарушением трофических процессов в ране. Даже в период разрешения лучевой болезни появляющаяся на пораженной поверхности грануляционная ткань отличается недостаточной зрелостью, легко травмируется при перевязках и кровоточит. Эпителизация ожоговой поверхности протекает также крайне медленно.
Данный текст является ознакомительным фрагментом.
Похожие главы из других книг:
Ожоги
Ожоги приносят много страданий больным, они опасны нагноением и заражением крови. Перевязки при ожогах всегда связаны с мучительной болью, ведь повязки приходится буквально отдирать от кожи. Всех этих неприятностей легко избежать, если воспользоваться синим
Ожоги
Ожоги — повреждение тканей организма в результате местного действия высокой температуры, агрессивных химических веществ, электрического тока или ионизирующего излучения. Различают ожоги поверхностные, которые заживают самостоятельно, и глубокие.Нельзя
Ожоги термические и ожоги паром
При ожогах оказывающий помощь должен в первую очередь постараться прекратить воздействие высокой температуры на пострадавшего.Нужно удалить пострадавшего из зоны действия высокой температуры в безопасное место. Если на человеке горит и
Заключение. Свидетели Большого взрыва
Как я устал от науки о сознании! Какое трудное путешествие! Особенно тяжко далась мне русская философия сознания. Словно до этого было бурное море, а тут пошла полоса прибрежных рифов, и пришлось напрячься еще сильнее. Оно и понятно,
Ожоги
Поверхностные ожоги, застарелые раны, оставшиеся в результате ожогов —
ОЖОГИ
В больницы, особенно в ожоговые центры, обычно попадают с обширными поражениями кожного покрова. В быту, ошпарив кипятком руку или ногу, ограничиваются, как правило, посещением поликлиники. Бывает, и вовсе не обращаются к врачу, обходясь домашними
Ожоги
Соседство 9-месячного малыша с чашкой горячего кофе почти всегда кончается ожогом у ребенка. Степень или глубина его определяются тем, насколько сильную боль он причиняет и насколько поражена при этом кожа. Ожог I степени (например, от солнечных лучей) вызывает
Ожоги
1. Сразу после ожога смачивать обожженное место спиртом, одеколоном.2. После ожога следует обмакнуть обожженную часть тела в воду, а затем обильно посыпать чайной содой.3. Приложить свежий лист алоэ или каланхоэ.4. Мазь и эмульсия алоэ. Эмульсию приготавливают из
Ожоги
Испытанный способ борьбы с ожогами относительно небольшой площади – как можно быстрее погрузить обожженную часть тела в холодную воду и достаточно долго там ее подержать.Если это сделано вовремя, пузыри не образуются.Иногда йогины умудряются спасать даже
ОЖОГИ
Воздействие высокой температуры может нанести серьезный вред здоровью человека. Общеизвестно, что образующиеся в результате воздействия высоких температур ожоги бывают четырех степеней.При ожоге первой степени, характеризующимся покраснением, шелушением кожи,
Солнечные ожоги, термические ожоги I степени
Смазывать пораженные участки 8–10–дневным раствором чайного гриба, по мере высыхания
5.4. ПОРАЖЕНИЕ ГЛАЗ УЛЬТРАФИОЛЕТОВЫМ И ИНФРАКРАСНЫМ ИЗЛУЧЕНИЕМ
Источником опасного для глаз ультрафиолетового (УФ) излучения могут быть:? яркий солнечный свет, отраженный от снега, воды, стекла, бетона и т. п.;? УФ-лампы, используемые в соляриях, в устройствах для
Ожоги
? Когда-то давно я прочел историю одного лекаря, который жил в Германии много лет тому назад и который демонстрировал простому люду чудесное исцеление. Звали его доктор Вотерс. Он выходил на площадь, обжигал руку крутым кипятком, а затем обильно посыпал ожог… чем бы
Ожоги
Средство из корней репейника с миндальным маслом20 г корней репейника, 100 мл миндального масла. Сырье измельчить с помощью мясорубки, залить миндальным маслом и настаивать в темном прохладном месте в течение 10 суток. Затем поставить настой на слабый огонь, довести
Ожоги
Ожоги различаются по степени тяжести, определяемой по площади и глубиной поражения тканей: ожог I степени характеризуется покраснением кожи и отеком; ожог II степени характеризуется образованием волдырей, наполненных жидкостью; ожог III степени характеризуется
Источник
При наземном ядерном взрыве около 50 % энергии идёт на образование ударной волны и воронки в земле, 30–50 % — в световое излучение, до 5 % — на проникающую радиацию и электромагнитное излучение и до 15 % — в радиоактивное заражение местности.
При воздушном взрыве нейтронного боеприпаса доли энергии распределяются своеобразно: ударная волна — до 10 %, световое излучение — 5–8 % и примерно 85 % энергии уходит в проникающую радиацию (нейтронное и гамма-излучения)[1]
Ударная волна и световое излучение аналогичны поражающим факторам традиционных взрывчатых веществ, но световое излучение в случае ядерного взрыва значительно мощнее.
Ударная волна разрушает строения и технику, травмирует людей и оказывает отбрасывающее действие быстрым перепадом давления и скоростным напором воздуха. Последующие за волной разрежение (падение давления воздуха) и обратный ход воздушных масс в сторону развивающегося ядерного гриба также могут нанести некоторые повреждения.
Световое излучение действует только на неэкранированные, то есть ничем не прикрытые от взрыва объекты, может вызвать воспламенение горючих материалов и пожары, а также ожоги и поражение зрения человека и животных.
Проникающая радиация оказывает ионизирующее и разрушающее воздействие на молекулы тканей человека, вызывает лучевую болезнь. Особенно большое значение имеет при взрыве нейтронного боеприпаса. От проникающей радиации могут защитить подвалы многоэтажных каменных и железобетонных зданий, подземные убежища с заглублением от 2 метров (погреб, например или любое укрытие 3–4 класса и выше), некоторой защитой обладает бронированная техника.
Радиоактивное заражение — при воздушном взрыве относительно «чистых» термоядерных зарядов (деление-синтез) этот поражающий фактор сведён к минимуму. И наоборот, в случае взрыва «грязных» вариантов термоядерных зарядов, устроенных по принципу деление-синтез-деление, наземного, заглублённого взрыва, при которых происходит нейтронная активация содержащихся в грунте веществ, а тем более взрыва так называемой «грязной бомбы» может иметь решающее значение.
Электромагнитный импульс выводит из строя электрическую и электронную аппаратуру, нарушает радиосвязь.
В зависимости от типа заряда и условий взрыва энергия взрыва распределяется по-разному. Например, при взрыве обычного ядерного заряда средней мощности (10 — 100 кт) без повышенного выхода нейтронного излучения или радиоактивного загрязнения может быть следующее соотношение долей энергетического выхода на различных высотах[2]:
Доли энергии воздействующих факторов ядерного взрыва | |||||||||
Высота / Глубина | Рентгеновское излучение | Световое излучение | Теплота огненного шара и облака | Ударная волна в воздухе | Деформация и выброс грунта | Волна сжатия в грунте | Теплота полости в земле | Проникающая радиация | Радиоактивные вещества |
---|---|---|---|---|---|---|---|---|---|
100 км | 64 % | 24 % | 6 % | 6 % | |||||
70 км | 49 % | 38 % | 1 % | 6 % | 6 % | ||||
45 км | 1 % | 73 % | 13 % | 1 % | 6 % | 6 % | |||
20 км | 40 % | 17 % | 31 % | 6 % | 6 % | ||||
5 км | 38 % | 16 % | 34 % | 6 % | 6 % | ||||
0 м | 34 % | 19 % | 34 % | 1 % | менее 1 % | ? | 5 % | 6 % | |
Глубина камуфлетного взрыва | 30 % | 30 % | 34 % | 6 % |
Световое излучение[править | править код]
Самое страшное проявление взрыва — не гриб, а быстротечная вспышка и образованная ею ударная волна
Образование головной ударной волны (эффект Маха) при взрыве 20 кт
Разрушения в Хиросиме в результате атомной бомбардировки
Жертва ядерной бомбардировки Хиросимы
Световое излучение — это поток лучистой энергии, включающий ультрафиолетовую, видимую и инфракрасную области спектра. Источником светового излучения является светящаяся область взрыва — нагретые до высоких температур и испарившиеся части боеприпаса, окружающего грунта и воздуха. При воздушном взрыве светящаяся область представляет собой шар, при наземном — полусферу.
Максимальная температура поверхности светящейся области составляет обычно 5700-7700 °C. Когда температура снижается до 1700 °C, свечение прекращается. Световой импульс продолжается от долей секунды до нескольких десятков секунд, в зависимости от мощности и условий взрыва. Приближенно, продолжительность свечения в секундах равна корню третьей степени из мощности взрыва в килотоннах. При этом интенсивность излучения может превышать 1000 Вт/см² (для сравнения — максимальная интенсивность солнечного света 0,14 Вт/см²).
Результатом действия светового излучения может быть воспламенение и возгорание предметов, оплавление, обугливание, большие температурные напряжения в материалах.
При воздействии светового излучения на человека возникает поражение глаз и ожоги открытых участков тела, а также может возникнуть поражение и защищенных одеждой участков тела.
Защитой от воздействия светового излучения может служить произвольная непрозрачная преграда.
В случае наличия тумана, дымки, сильной запыленности и/или задымленности воздействие светового излучения также снижается.
Ударная волна[править | править код]
Большая часть разрушений, причиняемых ядерным взрывом, вызывается действием ударной волны. Ударная волна представляет собой скачок уплотнения в среде, который движется со сверхзвуковой скоростью (более 350 м/с для атмосферы). При атмосферном взрыве скачок уплотнения — это небольшая зона, в которой происходит почти мгновенное увеличение температуры, давления и плотности воздуха. Непосредственно за фронтом ударной волны происходит снижение давления и плотности воздуха, от небольшого понижения далеко от центра взрыва и почти до вакуума внутри огненной сферы. Следствием этого снижения является обратный ход воздуха и сильный ветер вдоль поверхности со скоростями до 100 км/час и более к эпицентру.[3] Ударная волна разрушает здания, сооружения и поражает незащищенных людей, а близко к эпицентру наземного или очень низкого воздушного взрыва порождает мощные сейсмические колебания, способные разрушить или повредить подземные сооружения и коммуникации, травмировать находящихся в них людей.
Большинство зданий, кроме специально укрепленных, серьёзно повреждаются или разрушаются под воздействием избыточного давления 2160—3600 кг/м² (0,22—0,36 атм/0,02-0,035 МПа).
Энергия распределяется по всему пройденному расстоянию, из-за этого сила воздействия ударной волны уменьшается пропорционально кубу расстояния от эпицентра.
Защитой от ударной волны для человека являются убежища. На открытой местности действие ударной волны снижается различными углублениями, препятствиями, складками местности.
На Западе, в качестве отдельного фактора, относящегося к ударной волне, выделяют осколки стекла: выбитые ударной волной стекла разлетаются на осколки, летящие в сторону от взрыва, и способные серьезно травмировать и даже убить находящихся за стеклом.
Проникающая радиация[править | править код]
Проникающая радиация (ионизирующее излучение) представляет собой гамма-излучение и поток нейтронов, испускаемых из зоны ядерного взрыва в течение единиц или десятков секунд.
Радиус поражения проникающей радиации при взрывах в атмосфере меньше, чем радиусы поражения от светового излучения и ударной волны, поскольку она сильно поглощается атмосферой. Проникающая радиация поражает людей только на расстоянии 2-3 км от места взрыва, даже для больших по мощности зарядов, однако ядерный заряд может быть специально сконструирован таким образом, чтобы увеличить долю проникающей радиации для нанесения максимального ущерба живой силе (так называемое нейтронное оружие). На больших высотах, в стратосфере и космосе проникающая радиация и электромагнитный импульс — основные поражающие факторы.
Проникающая радиация может вызывать обратимые и необратимые изменения в материалах, электронных, оптических и других приборах за счет нарушения кристаллической решетки вещества и других физико-химических процессов под воздействием ионизирующих излучений.
Защитой от проникающей радиации служат различные материалы, ослабляющие гамма-излучение и поток нейтронов. Разные материалы по-разному реагируют на эти излучения и по-разному защищают.
От гамма-излучения хорошо защищают материалы, имеющие элементы с высокой атомной массой (железо, свинец, низкообогащённый уран), но эти элементы очень плохо ведут себя под нейтронным излучением: нейтроны относительно хорошо их проходят и при этом генерируют вторичные захватные гамма-лучи, а также активируют радиоизотопы, надолго делая саму защиту радиоактивной (например, железную броню танка; свинец же не проявляет вторичной радиоактивности). Пример слоёв половинного ослабления проникающего гамма-излучения[4]: свинец 2 см, сталь 3 см, бетон 10 см, каменная кладка 12 см, грунт 14 см, вода 22 см, древесина 31 см.
Нейтронное излучение в свою очередь хорошо поглощается материалами, содержащими лёгкие элементы (водород, литий, бор), которые эффективно и с малым пробегом рассеивают и поглощают нейтроны, при этом не активируются и гораздо меньше выдают вторичное излучение. Слои половинного ослабления нейтронного потока: вода, пластмасса 3 — 6 см, бетон 9 — 12 см, грунт 14 см, сталь 5 — 12 см, свинец 9 — 20 см, дерево 10 — 15 см. Лучше всех материалов поглощают нейтроны водород (но в газообразном состоянии он имеет малую плотность), гидрид лития и карбид бора.
Идеального однородного защитного материала от всех видов проникающей радиации нет, для создания максимально лёгкой и тонкой защиты приходится совмещать слои различных материалов для последовательного поглощения нейтронов, а затем первичного и захватного гамма-излучения (например, многослойная броня танков, в которой учтена и радиационная защита; защита оголовков шахтных пусковых установок из ёмкостей с гидратами лития и железа с бетоном), а также применять материалы с добавками. Универсальны широко применяемые в строительстве защитных сооружений бетон и увлажнённая грунтовая засыпка, содержащие и водород и относительно тяжёлые элементы. Очень хорош для строительства бетон с добавкой бора (20 кг B4C на 1 м³ бетона), при одинаковой толщине с обычным бетоном (0,5 — 1 м) он обеспечивает в 2 — 3 раза лучшую защиту от нейтронной радиации и подходит для защиты от нейтронного оружия[5].
Электромагнитный импульс[править | править код]
Зарево, возникшее в результате высотного ядерного взрыва Starfish Prime
При ядерном взрыве в результате сильных токов в ионизированном радиацией и световым излучением в воздухе возникает сильнейшее переменное электромагнитное поле, называемое электромагнитным импульсом (ЭМИ). Хотя оно и не оказывает никакого влияния на человека, воздействие ЭМИ повреждает электронную аппаратуру, электроприборы и линии электропередач. Помимо этого, большое количество ионов, возникшее после взрыва, препятствует распространению радиоволн и работе радиолокационных станций. Этот эффект может быть использован для ослепления системы предупреждения о ракетном нападении.
Сила ЭМИ меняется в зависимости от высоты взрыва: в диапазоне ниже 4 км он относительно слаб, сильнее при взрыве 4-30 км, и особенно силён при высоте подрыва более 30 км (см., например, эксперимент по высотному подрыву ядерного заряда Starfish Prime).
Возникновение ЭМИ происходит следующим образом:
- Проникающая радиация, исходящая из центра взрыва, проходит через протяженные проводящие предметы.
- Гамма-кванты рассеиваются на свободных электронах, что приводит к появлению быстро изменяющегося токового импульса в проводниках.
- Вызванное токовым импульсом поле излучается в окружающее пространство и распространяется со скоростью света, со временем искажаясь и затухая.
Под воздействием ЭМИ во всех не экранированных протяжённых проводниках индуцируется напряжение, и чем длиннее проводник, тем выше напряжение. Это приводит к пробою изоляции и выходу из строя электроприборов, связанных с кабельными сетями, например, трансформаторные подстанции и т. д.
Большое значение ЭМИ имеет при высотном взрыве от 100 км и более. При взрыве в приземном слое атмосферы не оказывает решающего поражения малочувствительной электротехники, его радиус действия перекрывается другими поражающими факторами. Но зато оно может нарушить работу и вывести из строя чувствительную электроаппаратуру и радиотехнику на значительных расстояниях — вплоть до нескольких десятков километров от эпицентра мощного взрыва, где прочие факторы уже не приносят разрушающий эффект. Может вывести из строя незащищённую аппаратуру в прочных сооружениях, рассчитанных на большие нагрузки от ядерного взрыва (например ШПУ). На людей поражающего действия не оказывает[6].
Радиоактивное заражение[править | править код]
Кратер от взрыва 104-килотонного заряда. Выбросы грунта также служат источником заражения
Радиоактивное заражение — это результат выпадения из поднятого в воздух облака значительного количества радиоактивных веществ. Три основных источника радиоактивных веществ в зоне взрыва — продукты деления ядерного горючего, не вступившая в реакцию часть ядерного заряда и радиоактивные изотопы, образовавшиеся в грунте и других материалах под воздействием нейтронов (наведенная радиоактивность).
Оседая на поверхность земли по направлению движения облака, продукты взрыва создают радиоактивный участок, называемый радиоактивным следом. Плотность заражения в районе взрыва и по следу движения радиоактивного облака убывает по мере удаления от центра взрыва. Форма следа может быть самой разнообразной в зависимости от окружающих условий, например, скорости и направления ветра.
Радиоактивные продукты взрыва испускают три вида излучения: альфа-, бета- и гамма-. Время их воздействия на окружающую среду весьма продолжительно. В связи с естественным процессом радиоактивного распада интенсивность излучения уменьшается, особенно резко это происходит в первые часы после взрыва.
Поражение людей и животных воздействием радиационного заражения может вызываться внешним и внутренним облучением. Тяжелые случаи могут сопровождаться лучевой болезнью и летальным исходом.
Установка на боевую часть ядерного заряда оболочки из кобальта вызывает заражение территории опасным изотопом 60Co (гипотетическая грязная бомба).
Эпидемиологическая и экологическая обстановка[править | править код]
Ядерный взрыв в населённом пункте, как и другие катастрофы, связанные с большим количеством жертв, разрушением вредных производств и пожарами, приведёт к тяжёлым условиям в районе его действия, что будет вторичным поражающим фактором. Люди, даже не получившие значительных поражений непосредственно от взрыва, с большой вероятностью могут погибнуть от инфекционных заболеваний[7] и химических отравлений. Велика вероятность сгореть в пожарах или просто расшибиться при попытке выйти из завалов.
Ядерная атака атомной электростанции может поднять в воздух значительно больше радиоактивных веществ, чем может дать сама бомба. При прямом попадании заряда и испарении реактора или хранилища радиоактивных материалов площадь земель, в течение многих десятков лет непригодных для жизни, будет в сотни и тысячи раз больше площади заражения от наземного ядерного взрыва. Например, при испарении реактора мощностью 100 МВт ядерным взрывом в 1 мегатонну, и просто при наземном ядерном взрыве 1 Мт, соотношение площадей территории со средней дозой 2 рад (0,02 Грей) в год будет следующим: через 1 год после атаки — 130 000 км² и 15 000 км²; через 5 лет — 60 000 км² и 90 км²; через 10 лет — 50 000 км² и 15 км²; через 100 лет — 700 км² и 2 км²[8].
Психологическое воздействие[править | править код]
Люди, оказавшиеся в районе действия взрыва, кроме физических повреждений, испытывают мощное психологическое угнетающее воздействие от устрашающего вида разворачивающейся картины ядерного взрыва, катастрофичности разрушений и пожаров, исчезновения привычного ландшафта, множества погибших, изувеченных, умирающих людей, разлагающихся трупов из-за невозможности их захоронения, гибели родных и близких, осознания причинённого вреда своему организму и ужаса наступающей смерти от развивающейся лучевой болезни. Результатом такого воздействия среди выживших после катастрофы является развитие острых психозов, а также клаустрофобных синдромов из-за осознания невозможности выйти на поверхность земли, устойчивых кошмарных воспоминаний, влияющие на все последующее существование. В Японии есть отдельное слово, обозначающее людей, ставших жертвами ядерных бомбардировок — «Хибакуся».
Ссылки[править | править код]
- Поражающие факторы ядерного взрыва
Источники[править | править код]
- ↑ Убежища гражданской обороны: Конструкция и расчёт/ В. А. Котляревский, В. И. Ганушкин, А. А. Костин и др.; Под ред. В. А. Котляревского. — М.: Стройиздат, 1989. — С. 4—5. ISBN 5-274-00515-2
- ↑ Защита от оружия массового поражения. — М.: Воениздат, 1989. — С. 23.
- ↑ Действие ядерного взрыва. Сборник переводов. М., «Мир», 1971. — С. 85
- ↑ Морозов, В. И. и др. Приспособление подвалов существующих зданий под убежища, М., 1966. С. 72
- ↑ Иванов, Г. Нейтронное оружие. // Зарубежное военное обозрение, 1982, № 12. — С. 53
- ↑
Атаманюк В.Г., Ширшев Л.Г. Акимов Н.И. Гражданская оборона: Учебник для втузов / Под ред. Д.И.Михайдова. — М.: Высш. шк., 1986. — С. 39. — 207 с. - ↑ Иванов, Г. Нейтронное оружие. // Зарубежное военное обозрение, 1982, № 12. — С. 52
- ↑
Защита от оружия массового поражения. — М.: Воениздат, 1989. — С. 79, 81.
9. Гуревич В. И. Электромагнитный импульс высотного ядерного взрыва и защита электрооборудования от него. — М.: Инфра-Инженерия, 2018—508 с.: ил.
Источник